Sunčeva energija omogućuje proizvodnju pomoću toplinskih strojeva ili fotonaponski. Jednom proizvedena njene primjene ograničava samo ljudska mašta. Dio popisa primjene sunca uključuje grijanje i hlađenje prostora u sunčevoj gradnji, pitku vodu destilacijom i dezinfekcijom, rasvjetu, sunčevu toplu vodu, toplinu za sunčevo kuhanje, visokotemperaturnu industrijsku vodu.
Sunčeve tehnologije široko se karakteriziraju kao ili pasivna sunčeva ili aktivna sunčeva, ovisno o načinu prikupljanja, pretvaranja i raspoređivanja sunčeve svjetlosti. Aktivne sunčeve tehnike uključuju primjenu fotonaponskih ploča i sunčeva toplina kolektora (s električnom ili mehaničkom opremom) kako bi se sunčeva svjetlost pretvorila u iskoristive proizvode. Pasivne sunčeve tehnike uključuju orijentaciju zgrada prema suncu, odabir materijala s povoljnim svojstvima termalna masa ili svjetlosnim svojstvima raspršenja, te oblikovanjem prostora u kojima zrak prirodno kruži prirodno kruženje zraka.
Sunčeva energija[uredi VE | uredi]
Vista-xmag.pngPodrobniji članci o temama: Insolacija i Sunčevo zračenje
Oko polovine dolaznog zračenja sunca dosegne zemlju.
Zemlja kontinuirano prima 174 PW dolazećeg sunčeva zračenja (insolacije) u gornjoj atmosferi. Kad dođe do atmosfere, 6 % insolacije se reflektira, a 16 % se apsorbira. Prosječni atmosferski uvjeti (oblaci, prašina, čestice zagađenja) nadalje umanjuju sunčevo zračenje za 20 % refleksijom i 3 % apsorpcijom. Ovi atmosferski uvjeti ne samo da umanjuju količinu energije koja dopire do zemljine površine, nego i raspršuju otprilike 20 % dolazne svjetlosti i filtriraju neke dijelove spektra. Nakon prolaska kroz atmosferu, otprilike pola insolacije je u vidljivom dijelu elektromagnetskog spektra, a druga polovina je u infracrvenom dijelu spektra (samo mali dio je ultraljubičasto zračenje).[1]
Zemljina površina, oceani i atmosfera upijaju sunčevo zračenje koje im povećava temperaturu. Topli zrak u kojem je isparena voda iz oceana se diže uzrokujući kruženje atmosfere ili konvekciju. Kad zrak dosegne visinu gdje je zrak hladniji, vodena para kondenzira se u oblake, koji svoj sadržaj kiše po zemljinoj površini na taj način dovršivši kruženje vode. Ostatna toplina kondenzacije vode pojačava konvekciju, proizvodeći atmosferske fenomene poput vjetra, ciklona i anticiklona. [2] Sunčevo svjetlo apsorbirano u oceanima i kopnenim masama zadržava površinu na prosječnoj temperaturi od 14 °C.[3] Pretvorba sunčeve energije u kemijsku energiju posredstvom fotosinteze proizvodi hranu, drvo i biomasu iz koje su nastala fosilna goriva. Tokovi i zalihe sunčeve energije u okolišu su veliki u usporedbi s ukupnim potrebama ljudi za energijom.[4]
Godišnji sunčevi tokovi & energetske potrebe čovječanstva
Sunčeva 3,850.000 EJ[5]
Vjetar 2.250 EJ[6]
Biomasa 3.000 EJ[7]
Potrošnja primarne energije (2005) 487 EJ[8]
Električna energija (2005) 56,7 EJ[9]
Ukupna sunčeva energija apsorbirana u Zemljinoj atmosferi, oceanima i kopnenim masama je otprilike 3,850.000 eksadžula (EJ) godišnje.[10] Godine 2002., ovo je u jednom satu dalo više energije nego čitavo čovječanstvo potroši tijekom jedne godine.[11][12] Fotosinteza uhvati otprilike 3,000 EJ godišnje u biomasu.[13] Količina sunčeve energije koja dosegne Zemljinu površinu tako je velika da je dvostruko veća od ukupne energije koju će čovječanstvo ikada zadobiti iz svih neobnovljivih izvora ugljena, nafte, prirodnog plina i iskopanog urana zajedno.[14]
Iz tablice resursa čini se da sunčeva energija, vjetar ili biomasa mogu zadovoljiti sve energetske potrebe, ipak, povećana upotreba biomase imala je negativan učinak na globalno zagrijavanje te dramatičan rast cijena hrane krčenjem šuma i korištenjem nasada za proizvodnju biogoriva. [15]
Vrste tehnologija[uredi VE | uredi]
Prosječna insolacija pokazuje područja (male crne točke) potrebne kako bi se primarni izvori energije zamijenili sunčevim. 18 TW je 568 Eksadžula (EJ) godišnje. Insolacija za većinu ljudi (u većini krajeva) je od 150 do 300 W/m² ili 3,5 to 7,0 kWh/m²/danu.
Sunčeva energija odnosi se prvenstveno na sunčevo zračenje za praktičnu primjenu. Iako, sve obnovljive izvore osim geotermalne i plime i oseke pokreće sunce.
Sunčeve tehnologije široko se opisuju kao ili pasivne ili aktivne ovisno o načinu kao se prikuplja, pretvorbi i raspodjeli sunčeve svjetlosti. Aktivne sunčeve tehnike uključuju primjenu fotonaponskih ploča, pumpa i ventilatora kako bi se sunčevo svjetlo pretvorilo u upotrebljive oblike. Pasivne sunčeve tehnike uključuju odabir materijala s povoljnim termičkim osobinama, oblikovanjem prostora u kojima zrak prirodno kruži, orijentaciju zgrada prema suncu. Aktivne sunčeve tehnologije povećavaju dotok energije i smatraju se tehnologijama proizvodnje, dok pasivne tehnologije smanjuju potrebu za drugim izvorima i uglavnom se smatraju tehnologijama potrošnje.[16]
Arhitektura i urbano planiranje[uredi VE | uredi]
Vista-xmag.pngPodrobniji članci o temama: Pasivna sunčeva arhitektura i Urbani toplinski otoci
Tehničko sveučilište u Darmstadtu u Njemačkoj osvojilo je Sunčev dekatlon 2007. godine u Washingtonu. Ovom pasivnom kućom posebno dizajniranom za vlažnu i suptropsku klimu.[17]
Sunčevo svjetlo utjecalo je na građenje od samog početka povijesti građenja.[18] Potpuno razvijenu solarnu arhitekturu i metode urbanog planiranja prvi su put primjenili Grci, Kinezi i Egipćani koji su orijentirali svoje građevine prema jugu kako bi osigurali svjetlost i toplinu. Rimske kupelji imale su velike jugu okrenute prozore. Sunčev dizajn u Europi bio je uglavnom zaboravljen nakon pada Rima, ali se nastavio neoslabljen primjenjivati u Kini gdje kozmologijska tradicija povezuje jug s ljetom, toplinom i zdravljem.[19]
Osnovne osobine pasivne sunčeve arhitekture su orijentacija Suncu, kompaktne proporcije (malene površine u odnosu na volumen), selektivno zasjenjivanje i termalna masa.[18] Kad se ove osobine odmjere prema mjesnoj klimi i okruženju mogu uroditi dobro osvijetljenim prostorima koji ostaju na ugodnim temperaturama. Sokratova kuća Megaron klasičan je primjer solarnog dizajna.[18] Skori pristup solarnom dizajnu upotrebom kompjutorskog modeliranja vezuje sustave sunčevog osvjetljenja, grijanja i prozračivanja u intergriran paket sunčevog dizajna.[20] Aktivna solarna oprema kao pumpe, ventilatori i prekretni prozori također mogu pomoći pasivnom dizajnu i poboljšati ukupne osobine sustava.
Urbani toplinski otoci (UTO) su područja velegradova s višim temeperaturama od okoline. Ove povišene temperature posljedica su urbanih materijala kao što su asfalt i beton koji imaju niži albedo (koeficijent refleksije) i veći toplinski kapacitet nego prirodni okoliš. Izravna metoda suprotstavljanja UTO učinku je bojanje građevina i prometnica u bijelo i sađenje stabala. Hipotetski program "cool communities" u Los Angelesu predviđa da urbane temperature mogu biti snižene za otprilike 3 °C sađenjem deset milijuna stabala, ponovnim uređenjem krovova na pet milijuna domova i bojanjem jedne četvrtine cesta. Procijenjena cijena cool communities programa je 1 milijarda US$. Procijenjena godišnja ušteda je 170 milijuna US$ usljed smanjenja korištenja rashladnih uređaja i 360 milijuna US$ usljed smanjenja troškova za zdravstveno osiguranje povezano s emisijom štetnih plinova (smoga).[21]
Agrikultura i hortikultura[uredi VE | uredi]
Vista-xmag.pngPodrobniji članci o temama: Agrikultura, Hortikultura, i Staklenik
Staklenici kao ovaj u Nizozemskom Westlandu uzgajaju širok raspon povrća, voća i cvijeća.
Agrikultura samosvojno traži optimizaciju uhvata sunčeve energije zbog povećanja produktivnosti biljaka. Tehnike poput tempiranih ciklusa sađenja, određenih orijentacija redova, prilagođenih visina redova i miješanje biljnih vrsta može poboljšati prinos nasada.[22][23] Dok se sunčeva svjetlost uglavnom smatra obilnim resursom, postoje iznimke koje podcrtavaju važnost sunčeve energije za argikulturu. Tijekom kratkih razdoblja rasta u Malom ledenom dobu, francuski i engleski uzgajivači upotrijebili su zidove za voće da što je više moguće povećaju skupljanje sunčeve energije. Ovi zidovi su bili termalne mase i ubrzavali su sazrijevanje voća držeći biljke toplima. Rani zidovi za voće bili su postavljeni okomito na tlo uzduž nasada licem okrenuti jugu, ali tijekom vremena razvijeni su zakrivljeni zidovi kako bi se bolje iskoristila sunčeva svjetlost. Godine 1699. Nicolas Fatio de Duillier predložio je čak i upotrebu naprave za praćenje koja se mogla zakretati kako bi pratila kretanja Sunca.[24] Sunčeva energija se također upotrebljava u mnogim područjima agrikulture osim rasta nasada. Primjene uključuju pumpanje vode, sušenje prinosa, leženje pilića i sušenje kokošjeg gnojiva.[25][26]
Staklenici kontroliraju upotrebu sunčeve topline i svjetlosti za rast posebnih nasada. Primitivni staklenici prvo su upotrijebljeni tijekom rimskih vremena za rast krastavaca tijekom cijele godine za rimskog cara Tiberija.[27] U 16. stoljeću prvi moderni staklenici građeni su u Europi za sačuvanje egzotičnih biljaka donesenih s istraživačkih putovanja.[28] Staklenici su ostali važan dio hortikulture i danas kad ih upotrebljavamo za uzgoj voća, povrća i cvijeća koji mogu biti relativno egzotični u mjesnoj klimi. Jedan od najvećih svjetskih stakleničkih kompleksa je Willcox u Arizoni gdje se uzgaja 106 hektara rajčica i krastavaca tijekom čitave godine. Prozirni plastični materijali također su upotrebljavani za isti učinak u obliku mnogo tunela i prekrivača za redove nasada.
Sunčeva rasvjeta[uredi VE | uredi]
Osvjetljavanje dnevnim sunčevim svjetlom kao ovim okulusom na vrhu Panteona u Rimu u upotrebi je od antičkih vremena.
Povijest osvjetljavanja utemeljena je na upotrebi prirodne svjetlosti. Rimljani su uočili važnost Prava na svjetlo već u 6. stoljeću i engleska Uredba iz 1832. godine odjek je ovog prava.[29][30] U dvadesetom stoljeću umjetno osvjetljenje postalo je glavni izvor za unutarnju rasvjetu i danas se otprilike 22 % električne energije u Sjedinjenim državama upotrebljava za rasvjetu.
Sustavi za rasvjetu dnevnim svjetlom prikupljaju i raspodjeljuju sunčevu svjetlost kako bi osigurali unutrašnju rasvjetu. Ovi sustavi izravno umanjuju upotrebu energije zamjenjujući umjetnu rasvjetu i posredno umanjuju potrošnju energije smanjujući potrebu za rashladnim sustavima. Iako nije lako u dovoljnim količinama osigurati prirodno osvjetljenje ono, ako ga usporedimo s umjetnom rasvjetom, nudi i fiziološke i psihološke dobrobiti. Dizajn rasvjete dnevnim svjetlom pažljivo odabire vrstu, veličinu i orijentaciju prozora, a također u obzir uzima i vanjske predmete i uređaje za zasjenjivanje. Pojedine osobine dizajna uključuju nazubljene krovove, krovna svjetla i svjetlosne cijevi. Ove osobine mogu se ugraditi u postojeće strukture ili, najučinkovitije, integrirane u paket sunčevog dizajna u obzir uzimaju čimbenike poput dobivanja i gubljenja topline i vremena upotrebe. Kad su osobine vezane uz osvjetljenje danjim svjetlom pravilno upotrijebljene može se smanjiti potreba za energijom za rasvjetu za 25 %. Ova ušteda od 1 EJ nije zanemariva u usporedbi s cjelokupnom godišnjom potrošnjom električne energije od 8,6 EJ (u SAD). [31]
Hibridna rasvjeta suncem (HRS) aktivan je način upotrebe sunčeve svjetlosti za osiguranje osvjetljenja. Ovi sustavi skupljaju sunčevu svjetlost upotrebom fokusirajućih zrcala koja prate Sunce i upotrebljavaju optička vlakna za prijenos svjetlosti u unutrašnjost zgrade da zamijene konvencionalnu rasvjetu. U jednokatnim objektima ovi sustavi u mogućnosti su prenijeti 50 % primljene svjetlosti.[32]
Sunčeva toplinska energija[uredi VE | uredi]
Vista-xmag.pngPodrobniji članak o temi: Sunčeva toplinska energija
Sunčeve toplinske tehnologije mogu se upotrebiti za grijanje vode, grijanje prostora, hlađenje prostora i dobijanje procesne topline.[33]
Grijanje vode[uredi VE | uredi]
Vista-xmag.pngPodrobniji članci o temama: Sunčeva topla voda i Sunčev kombinirani sustav
Solarni grijači vode gledaju ekvator i nagnuti su prema geografskoj širini kako bi skupili najviše energije.
Sunčevi sustavi vruće vode upotrebljavaju sunčevu energiju za grijanje vode. Na malim geografskim širinama (ispod 40 stupnjeva) 60 do 70 % vode za kućanstva do 60 °C može se osigurati sunčevim grijanjem.[34] Najuobičajeniji sunčevi grijači vode su ravni kolektori (34 %) i vakuumski cijevni kolektori (44 %) poglavito upotrijebljeni za toplu vodu za kućanstva te plastični kolektori (22 %) uglavnom rabljeni za grijanje bazena.[35]
U godini 2007. ukupno je bilo instalirano otprilike 154 GW s rastom od 15-20 % godišnje.[36] Kina je predvodnik u svijetu po upotrebi vruće vode grijane suncem sa 70 GW koji su bili postavljeni u 2006. godini i dugoročnim ciljem od 210 GW do 2020. godine.[37] Izrael je svjetski predvodnik u upotrebi vruće vode grijane suncem s 90 % domova koji upotrebljavaju ovu tehnologiju.[38] U SAD, Kanadi i Australiji grijanje bazena je najšira primjena ove tehnologije s postavljenim kapacitetima od 18 GW u 2005. godini.[16]
Grijanje, hlađenje i ventilacija[uredi VE | uredi]
Vista-xmag.pngPodrobniji članci o temama: Sunčevo grijanje, Termalna masa, Sunčev dimnjak, i Sunčeva klimatizacija
MIT-ova Sunčeva kuća br. 1. izgrađena 1939. godine upotrebljavala je sezonsku pohranu topline za grijanje tijekom čitave godine.
U SAD, sustavi za grijanje, ventilaciju i klimatizaciju zraka potroše više od 30 % (4,65 EJ) energije upotrijebljene u komercijalnim građevinama i blizu 50 % (10,1 EJ) energije potrošene u stambenim zgradama.[31][39] Tehnologije sunčeva grijanja, hlađenja i ventilacije mogu se upotrijebiti za smanjenje udjela ove potrošene energije.
Termalna masa, u najopćenitijem smislu, je bilo koji materijal koji ima sposobnost očuvanja topline. U kontekstu sunčeve energije, materijali termalne mase rabe se za pohranjivanje topline sa Sunca. Ovi materijali onemogućuju pregrijavanje unutrašnjosti tijekom dana i zrače svoju pohranjenu toplinu hladnijoj atmosferi noću. Obični materijali termalne mase uključuju kamen, cement i vodu. Dimenzije i smještaj termalne mase trebale bi uzimati u obzir nekoliko čimbenika kao klimu, vrijeme danjeg svjetla i zasjenjenost. Ovi materijali povijesno su upotrebljavani u suhim ili toplim temperaturnim područjima za održanje građevina hladnima, ali također mogu biti upotrijebljeni u hladnim područjima da održe građevine toplima. Kad se pravilno upotrebi termalna masa može pasivno održati temperature ugodnima bez potrošnje energije.[40]
Listopadna stabla i biljke mogu se upotrebljavati za zagrijavanje i hlađenje. Kad su zasađena na južnoj strani građevine, lišće stvara sjenu tijekom ljeta dok gole grane tijekom zime omogućuju nesmetan dotok svjetlosti i topline.[41] Voda sadržana u stablima također će pomoći u prilagođavanju temperature.
Desalinizacija i dezinfekcija[uredi VE | uredi]
Vista-xmag.pngPodrobniji članci o temama: Sunčeva dezinfekcija vode, Sunčeva desalinizacija, i Solar Powered Desalination Unit
SODIS naprava u Indoneziji pokazuje jednostavnost ovakvog pristupa u dezinfekciji vode.
Mali uređaj za preradu kanalizacijskih voda pogonjen sunčevom energijom.
Destilacija suncem proizvodnja je pitke vode iz [rasol|rasola]] ili preslane vode upotrebom sunčeve energije. Prvu primjenu zabilježili su arapski alkemičari u 16. stoljeću.[42] Godine 1589., Gambattista della Porta destilirao je vodu iz smrvljenog lišća. Prvo veliko postrojenje izgrađeno je 1872. godine u čileanskom rudarskom gradu Las Salinas.[43] Ova 4700 m² destilerije još uvijek mogu proizvesti do 22700 L dnevno, a radili su 40 godina.[43] Ovakve destilerije mogu raditi u pasivnom, aktivnom ili hibridnom načinu. Destilerije s dva kruga destilacije su najekonomičnije za pojedinačnu decentraliziranu primjenu u kućanstvima dok su aktivne višekružne jedinice prikladnije za veća postrojenja.[42]
Sunčeva dezinfekcija vode (SDV) je metoda dezinfekcije vode izlaganjem PET boca napunjenih vodom suncu na nekoliko sati.[44] Vrijeme izlaganja je različito s obzirom na vremenske uvjete i klimu od najmanje šest sati do dva dana u slučaju potpune naoblake.[45] SDV se obično primjenjuje na razini kućanstva i preporučila ju je Svjetska zdravstvena organizacija (World Health Organization) kao učinkovitu metodu za obradu vode za kućanstva i sigurnu pohranu.[46] Više od dva milijuna ljudi u zemljama u razvoju upotrebljavaju SDV za njihove dnevne potrebe za pitkom vodom.[45]
Sunčeva energija može se upotrijebiti u bazenima za stabilizaciju otpadnih voda bez kemikalija i električne energije. Dodatna prednost za okoliš su alge koje u ovakvim bazenima rastu i pritom fotosintezom vežu ugljični dioksid. [47][48]
Kuhanje[uredi VE | uredi]
Vista-xmag.pngPodrobniji članak o temi: Sunčevo kuhalo
Sunčev lonac u Aurovilleu u Indiji koncentrira sunčevu svjetlost na pokretni prijemnik kako bi proizveo paru za kuhanje.
Sunčeva kuhala upotrebljavaju sunčevu svjetlost za kuhanje, sušenje i pasterizaciju. Kuhanje na sunce umanjuje cijenu goriva, umanjuje potražnju goriva i poboljšava kvalitetu zraka smanjujući ili potpuno isključujući izvor dima.[49] Najjednostavnija vrsta sunčevog kuhala je kutijasto kuhalo koje je prvi izradio Horace de Saussure 1767. godine. [50] Osnovna kutija kuhala sastoji se od osunčanog spremnika s prozirnim poklopcem. Ova kuhala mogu uspješno primijeniti za djelomično oblačna vremena i dosežu temperature od 90–150 °C. [51] Ravna kuhala imaju reflektirajuću ploču kako bi usmjerile sunčevu svjetlost na izolirani spremnik, a postižu temperature usporedive s kutijastim kuhalima. Sunčeva kuhala koja koriste koncentriranu sunčevu svjetlost uobičajeno su sačinjena od ravnih zrcala ili udubljenih zrcala u obliku diska ili paraboličnog udubljenja. Ovakve naprave postižu temperature do 315 °C ali im je potrebno izravno osvjetljenje za ispravan rad pa se moraju premještati kako bi pratile Sunce.[52]
Sunčev lonac jedinstvena je tehnologija koncentriranja sunčeve svjetlosti u upotrebi u Sunčevoj kuhinji u Aurovilleu u Indiji. Nasuprot gotovo svim tehnologijama koncentriranja sunčeve svjetlosti koje upotrebljavaju zrcalne sustave praćenja, sunčev lonac upotrebljava nepomično kuglasto zrcalo. Ovo zrcalo fokusira svjetlost duž linije okomite na površinu kugle, a kompjutorski sustav upravljanja pomiče prijemnik kako bi bio na ovom pravcu. Para koja se proizvodi u prijemniku dostiže temperature od 150 °C te se potom upotrebljava za procesno grijanje u kuhinji gdje se priprema 2000 obroka dnevno.[53]
Nema komentara:
Objavi komentar